~

-—

N89 - 16281 4, <7/

Software Unit Testing in an Ada Environment

Glenn Wearnock
PRIOR Data Sciences

iatroduction:

PRIOR Data Sciences 1s currently developing a validation procedure for the Ada
binding of the Graphical Kerne!l System {GKS). PRIOR is also producing its own
version of GKS written in Ada. These major software engineering projects will
provide an opportunity for PRIOR to demonstrate a sound approach for software
testing in an Ada environment.

PRIOR’s GKS/Ada validation capability will be a collection of test programs and
data, and test management ‘idelines. These products will be used to assess the
correctness, completeness, aud efficiency of any GKS/Ada implementation.
GKS/Ada developers will be able to obtain the validation software for their own
use. PRIOR anticipates that this validation software will eventually be taken over
by an independent standards body to provide objective assessments of GKS/Ada
implementations, using an approach similar to the validation testing currently
applied to Ada compilers. In the meantime PRIOR will, if requested, use this vali-
dation software to assess GKS/Ada products. This project will require PRIOR to
offer a well organized, thorough, and .:iractical method for high level product test-
ing.

The second project, PRIOR’s implementation of GKS using the Ada language. is a
conventional software engineering task. It represents a large body of Ada code and
has some interesting testing problems associated with automated testing of graph-
ics routines. Here PRIOR’s normal test practices which include automated regres-
sion testing, independent quality assurance, test configuration management, and
the application of software quality metrics will be employed.

PRIOR’s software testing methods emphasize quality enhancement and automated
procedures. These general methods apply to software written in any programming
language. Ada makes some aspects of testing easier, and introduces some new con-
cerns. These issues are addressed below.

The Goals of Unit Testing:

The goal of a test plan is the discovery of the maximum number of errors within a
reasonable cost limit. Costs may be measured in dollars or in elapsed time, and
will have different limits depending on the nature of the software being tested. For
example, PRIOR is aiming to be able to validate a GKS/Ada implementation
within a period of less than one week. To achieve this PRIOR's GKS/Ada test

B.1.2.1

- 9-'_}/

z




suite will have to be carefully organized so that it is both robust, and yet still easy
to use.

Testing of GKS/Ada provides an excellent example for our examination of Ada
unit testing. Comprehensive and sophisticated unit tests are required to test the
complex functionality. The requirements are well defined by the GKS standard,
while the design specifications are covered by the proposed standard Ada binding
for GKS. A unit test plan should test both the GKS requirements, and the
GKS/Ada binding characteristics.

Testing Techniques:

Essentially, the purpose of unit testing is to exercise the module under test to ver-
ify that it performs correctly without producing undesirable side efflects. PRIOR
has developed TESTWARE, a collection of tools which provide a standard metho-
dology to exercise and validate software modules. TESTWARE is used to initialize
the appropriate global data areas and call the module to be tested with the
appropriate input parameters. The returned parameters and results are then
verified.

The use of a tool such as TESTWARE results in a suite of test cases which has
significant value for the full life of the associated software module. An additional
benefit of such a methodology is the ability to measure the degree of test coverage,
to track the progression of testing, and to schedule software projects with greater
accuracy.

The basic component of PRIOR’s TESTWARE is the test driver. The test driver
provides the framework necessary to run the tests and log the results. For each
test, the necessary initializations of global data and input parameters are per-
formed by the test driver. The module under test is called, executes and returns.
The test driver must verify the return parameters and validate the global data.

In the course of execution of the module, some stubs may be necessary to "feed"
the module with the necessary output parameters. It is often desirable to verify
that the correct stubs are called and the appropriate input parameters passed to
them. For these testing activities it would be very convenient to have an Ada com-
pilation system that treated every call to an uncompiled subprogram as a request
to interact with the test operator. The Ada system should make known the
parameter values passed in, and permit the operator to supply values to be
returned. We are currently writing stub coutines to do this, but it would be more
efficient to have this done automatically. Ada compilation systems with this capa-
bility will be very useful.

[ivery module to he tested requires a unique test driver. Therefore, the production
of the test driver must be as automated as possible. Working from a standard

B.1.2.2

ONIQINAL PAGE IS
OF POOR QUALITY



template, the test developer uses standard utilities and adds specialized code to
perform the necessary initializations and verifications.

The test driver is actually driven by the test data. Data is required for initializing
the global data and specifying the input parameters. Stub data is comprised of
stub names, expected input parameters, and the required output parameters.
Additional data describes the expected output paraineteis and specifies expected
changes to globui data. The separation of data from the test program eliminates
the need to recompile the software when test data must be changed. An unlimited
number of test cases can be defined in a single test data file.

Standard utilities are used to provide the translation from data to test case. The
greater the flexibility available in describing test data, the more powerful and easy
to use will be the testing tool. The tester should be able to easily specify
enumerated types, character strings, and floating and fixed point real numbers. A
range or allowable delta must be available for specifying expected output values
such as floating point reals.

A variety of automated test tools such as TESTWARE have been developed for
languages such as Pascal, C, and FORTRAN. These often test for errors which
will not occur in Ada due to the strorg typing, interface checking and run time
error checking. However, additional testing difficulties arise which relate
specifically to the Ada language. Testing of tasking operations is necessary to
identify deadlock and starvation. Pirucedures for testing generic packages are
required. Run time performance must also be assesed.

The GKS/Ada validation suite poses some additional problems. GKS output is
often of a form which is most easily validated interactively. As an example, one
test case may cause a green duck to be drawn upside down in the lower left corner.
An important aspect of effective testing is that the test itself should validate the
resuits. If the test procedure simply describes the correct display the operator may
not notice if the green duck actually appears in the lower right corner. It is prefer-
able to have the test software ask: "What colour is the duck?" (Green). "Is it
upside down?" (Yes). "Is it in the lover left corner?" (No). It can be seen from this
example that the task of supplying effective test software is a significant one.

The overall consideration in the design of TESTWARE is that the tester have the
necessary tools to easily create the appropriate environment for running the unit
under test and to be able to verify its actions and results. At the same time he
must not be required to provide tedious amounts of data which are not directly
related to the test.

Project Management:

Often the test portion of a software project is not given the attention or impor-
tance it deserves. Testing is usually viewed as something like "the process of

.3

[\9}

B.1l.

ORIGINAL PAGE IS
OF POOR QUALITY




demonstrating that errors are not present” when actually errors are inherent in
software. When software is tested by the person or group which developed it, with
this attitude, it is not surprising that many errors go undiscovered.

To be successful testing should be approached with the philosophy expressed by
Glenford Meyers. "Testing is the process of executing a program with the intent of
finding errors". Testing is really a destructive process. The implementation
schedule should reflect this and allow the necessary time for testing and correc-
tions. The evaluation of test eflectiveness sho.ld be based on the number of errors
discovered. To be most effective it is best to have an independent test team.

Significant responsibilities must rest on the test authority. Developing a unit test
for every module in the system is often not appropriate so the test authority must
determine which modules should be tested and in which combination and order.
The selection of appropriate test cases is critical to the success of testing.

Testing can be performed in an incremental or non-incremental manner. In the
non-incremental method, all modules are tested seperately, with calls to lower
modules replaced by stubs. When all modules have been tested, they are
integrated and tested as a system. This method allows for greater parallelism in
the unit testing process.

With incremental testing, the previously tested modules are used by the module
under test, when available, instead of stubs. This provides more test coverage as
the earlier modules are more extensively exercised. Also, integration and interface
errors are discovered earlier and are easier and less expensive to correct.

Although top down design is often the preferred method of large system design,
top down implementation and testing are not always preferrable. It is difficult to
use an incremental method of testing if top-down implementation is used, as it
becomes increasingly more difficult to provide the necessary input parameters to
drive the test cases for the lower level modules as they are added. In addition a
large number of stubs are required. With bottom up incremental testing, fewer
stubs are necessary and the test driver is directly calling the module under test so
that it is easier to force the test conditions.

Test cases can be generated by studying the internal logic and paths of the module
{white box techniques) and by studying boundary conditions and combinations of
input classes (black box techniques). Automated tools can also be helpful for this.

The real effectiveness of an automated test environment will be determined by its
degree of integration into the software development environment. Test modules
have to be associated with the appropriate soltware modules in the library. Com-
mands should be available to permit the library manager to automatically retest
appropriate modules. It is very important to track errors discovered and to have
the ability Vo generate statistics and status information concerning the test process.

B.1.2.4



LRI T G o A AT M 1w g e e

Coordination of Test Development:

A number of GKS test routines have already been written by groups in Europe and
in the U.S.A. . PRIOR intends to include these in its test suite, and then extend it
to cover new areas. By making this activity as visible as possible we hope to avoid
any duplication of effort.

B.1.2.5




